загрузка

Новая версия сайта Изборского клуба
 


ОЦЕНКИ. КОММЕНТАРИИ
АНАЛИТИКА
19.11.2016 Уникальная возможность подготовить текст общественного договора
Максим Шевченко
18.11.2016 Обратная сторона Дональда Трампа
Владимир Винников, Александр Нагорный
18.11.2016 Академия наук? Выкрасить и выбросить!
Георгий Малинецкий
17.11.2016 Пока непонятно, что стоит за арестом
Андрей Кобяков
17.11.2016 Трампу надо помочь!
Сергей Глазьев
16.11.2016 Трамп, приезжай!
Александр Проханов
16.11.2016 Место Молдавии – в Евразийском союзе
Александр Дугин
15.11.2016 Выиграть виски у коренного американца
Дмитрий Аяцков
15.11.2016 Победа Трампа и внешняя политика России
Николай Стариков
14.11.2016 Вольные бюджетники и немотствующий народ
Юрий Поляков



Когда и почему закончится век нефти

Жорес Алферов

Российский лауреат Нобелевской премии по физике 2000 года Жорес Алферов рассказывает об успешных и неудачных попытках человечества создать и укротить Солнце. Лекцию на тему «Эффективные технологии преобразования и генерации света» ученый прочитал в пятницу, 26 июня 2015 года – в последний день работы международного форума «Наука и общество. Наноструктуры: физика и технологии». Мы публикуем полную расшифровку лекции нобелевского лауреата.

Организация Объединенных Наций объявила 2015 год Годом света и световых технологий. На церемонии открытия в Париже многие докладчики вспоминали 1905 год, когда Альберт Эйнштейн опубликовал пять статей о роли света, говорили о том, какой вклад эти работы сделали в развитие всей современной науки. Я же буду говорить только об одной проблеме в этой области – об эффективной генерации и преобразовании световой энергии.

Президент Лондонского королевского общества Джордж Портер как-то сказал замечательную фразу: «Вся наука – прикладная. Разница только в том, что в одних случаях приложение возникает очень быстро, а в других – через столетия». Фундаментальная наука пытается найти решения двух основных проблем – происхождения Вселенной и происхождения жизни. Им посвящено огромное количество исследований, и из этих исследований возникла масса приложений. В XX столетии у людей появилась возможность создать источник бесконечной энергии, зажечь Солнце на Земле. Это удалось сделать, когда люди создали и взорвали водородную бомбу.

С моей точки зрения, наибольший вклад в решение проблемы создания рукотворного Солнца внесли Эдвард Теллер, Станислав Улам, Виталий Гинзбург и Борис Константинов. Идея использования термоядерного синтеза родилась достаточно быстро, но классический проект водородной бомбы мог быть реализован только после того, как первые шаги к его осуществлению сделал Станислав Улам, а затем идея получила развитие у Эдварда Теллера. Была создана система, которая была опробована в ноябре 1952 года на испытании «Майк» – энергия атомной бомбы с помощью специальных кранов концентрировалась на дейтерид-тритиевой взрывчатке. Ей требовалась гигантская система охлаждения, и хотя взрыв составил 10 мегатонн, это была не бомба, а термоядерное устройство. Бомбой ее сделал Виталий Лазаревич Гинзбург, который предложил использовать для реакции не дейтерид трития, а дейтерийд лития. Это твердое вещество, при комнатной температуре напоминает мел, и с его использованием бомбу можно сделать транспортабельной. Практический же метод получения лития-6 реализовал Борис Павлович Константинов, и этот подход, без использования методов Улама-Теллера, был реализован в сахаровской «Слойке».

Потом Солнце на Земле зажигали слишком много раз, и никакого счастья человечеству это не принесло. В 1951 году академики Тамм и Сахаров предложили магнитную изоляцию плазмы и основу того, что впоследствии получило название «токамак». Научное сообщество мира, советские, американские, британские ученые и представители многих других стран истратили сотни миллиардов долларов на различного сорта установки, в которых можно было бы вести реакции управляемого термоядерного синтеза. В итоге это вылилось в международный проект ITER, значительный вклад в который внесла и наша страна, и во Франции уже началось строительство. Если вы сегодня спросите специалистов, когда эти технологии получат широкое индустриальное применение, то получите ответ, что к 2020 году будут первые экспериментальные работы, может быть, в начале второй половины XXI века их начнут активно использовать. Я отношусь к этому весьма скептически, потому что одна магнитная изоляция плазмы сама по себе проблем не решает.

Есть еще другое направление термоядерных исследований – лазерный термоядерный синтез. В этой области есть определенный прогресс, добились его прежде всего в Ливерморской лаборатории. На установке National Ignition Facility 192 лазерных пучка были сконцентрированы на термоядерной взрывчатке в очень малом объеме, и количество полученной энергии оказалось больше энергии, переданной топливу. Но зачем все это изучать?

Нам, безусловно, нужны новые источники энергии. Причем успешный термоядерный реактор есть у нас под рукой. Это звезда класса G2, очень средняя по космическим меркам – наше Солнце. Оно надежно функционирует уже многие миллиарды лет, и еще долго будет продолжать работать без перебоев. Наверное, наилучшим вариантом для нас было бы научиться эффективному преобразованию солнечной энергии и эффективной генерации света.

Благодаря появлению полупроводниковых светодиодов и лазеров в этой области произошли значительные изменения. Той основой, на которой можно проводить и преобразование, и генерацию, стали гетероструктуры, которые сегодня нашли массу применений и в некоторых областях стали незаменимыми. К примеру, для космических исследований солнечные батареи являются не просто наиболее эффективным источником энергии, а фактически единственным решением энергетических проблем.

Очень важным моментом в повышении эффективности энергопотребления становится работа над источниками освещения: если мы повышаем их коэффициент полезного действия (КПД), то начинаем заметно экономить электричество. В свое время меня поразила статистика использования источников света в Великобритании. Практически до середины XX века там превалировали газовые и керосиновые источники света, и только во второй половине столетия начали повсеместно использовать электрические лампочки. В прошлом году трое выдающихся японских ученых, Исама Акасаки, Хироши Амано и Судзи Накамура, получили Нобелевскую премию за создание синего светодиода, с помощью которого люминесцентным образом можно получить белое освещение. Со временем основным типом светодиода станет такой, в котором вы будете регулировать все основные цвета, интенсивность освещения, задавать параметры на компьютере. Прогноз в той же Великобритании показывает, что с середины 2020-х годов практически все освещение перейдет на светодиоды.

Каменный век закончился не потому, что наступил дефицит камня, и век нефти закончится не из-за дефицита нефти. Во всех случаях основу развития цивилизации составляют новые технологии, которые создаются на основе научного исследования. Если мы посмотрим, как меняются различные типы солнечных батарей, самыми часто используемыми были и остаются устройства на кремниевой технологии. Но заметную часть в общей мощности производства стали занимать солнечные батареи на основе концентраторных каскадных фотоэлементов на гетероструктурах. Кроме того, в 2000 году вместе с нами Нобелевскую премию по химии получили Алан Хигер, Алан Мак-Диармид и Хидэки Сиракава – они доказали возможность получения проводящих и изоляционных полимерных материалов, а также перспективы использования этого нового класса материалов в том числе для светодиодов и солнечных батарей. Основное преимущество полимерного подхода в том, что с его помощью приборы можно печатать типографским способом. К сожалению, там пока масса проблем – рекордный КПД составляет всего 13%, низкая надежность, но перспектива печати открывает новые горизонты: пленку можно будет наклеивать на окна, и они будут одновременно пропускать световое излучение и генерировать электричество. Эти полимерные материалы определенно займут свою нишу, и частота их применения будет расти.

Первая государственная программа использования солнечной энергии появилась в США в 1974 году во время первого крупного энергетического кризиса, аналогичная программа была принята у нас в СССР. Стоимость пикового ватта установленной мощности на основе фотовольтаического эффекта в ней составляла $100 за ватт, и мы тогда прогнозировали, что за 25-30 лет этот показатель упадет до 25-30 центов за ватт. В первые годы мы успешно шли к результату, потом процессы затормозились, но, тем не менее, сегодня эта величина составляет полдоллара за ватт. Если сравнить этот показатель с аналогичной величиной для атомной электростанции – там стоимость составит четыре-пять тысяч долларов за киловатт. Если даже учесть дополнительные моменты, что там пиковый киловатт является одновременно средним (или очень близок к этому значению), что для солнечных батарей другие величины, требования к безопасности, все равно получаемые мощности стоят меньше.

Суммарная мощность всех солнечных батарей, установленных в мире в 2014 году, составила 47 ГВт. Для сравнения, пиковая мощность всех электростанций России составляет примерно 200 ГВт, а суммарная мощность всех установленных в мире солнечных батарей сегодня составляет 187 ГВт. Согласно прогнозам, к 2020 году она составит 500-540 ГВт.

В завершение я хочу подчеркнуть, что лучшим типом преобразования солнечной энергии сегодня является фотовольтаический эффект в полупроводниковых солнечных батареях. Теоретическая эффективность преобразования солнечной энергии на основе системы гетероструктур с большим количеством p-n переходов может достигать 86%. В системе всего с тремя p-n переходами сегодня реально достигнуть КПД в 46%, при крупномасштабном производстве этот показатель составит 40%. Чаще всего сегодня используются кремниевые солнечные батареи, у которых рекорд КПД составляет 25% в лаборатории и 18% в массовом производстве, но это уже очень выгодно.

Нам необходимо двигаться дальше по этой дороге, выбирая наиболее эффективные материалы, и, с моей точки зрения, для этого требуется решить две чрезвычайно важных проблемы. Первая – повышение КПД кремниевых солнечных батарей благодаря использованию второго каскада, причем важно, чтобы он не был слишком дорогим. Решение это непростое, но с его помощью можно увеличить КПД примерно в полтора раза – до 30%, это было доказано и у нас в Академическом университете, и другими организациями. Вторая – развитие каскадных солнечных концентраторных батарей, где при массовом производстве сегодня можно добиться КПД в 40%, а значит, возможно заметное увеличение прироста мощности при снижении стоимости одного киловатта.

Я бы сказал, что сегодня этот способ преобразования солнечной энергии достиг того уровня, когда он начинает экономически конкурировать с существующими типами производства электроэнергии. С моей точки зрения, к середине столетия он будет составлять заметную часть, десятки процентов производства электроэнергии в мире. Наука интернациональна по своей природе и не знает границ, и я надеюсь, что в решении столь важных задач мы не изменим своим принципам, будем делиться результатами исследований и работать вместе для решения общих проблем.

ifmo.ru 29.06.2015


Количество показов: 2709
Рейтинг:  3.97
(Голосов: 16, Рейтинг: 4.5)

Книжная серия КОЛЛЕКЦИЯ ИЗБОРСКОГО КЛУБА



А. Проханов.
Новороссия, кровью умытая



О.Платонов.
Русский путь



А.Фурсов.
Вопросы борьбы в русской истории



ИЗДАНИЯ ИНСТИТУТА ДИНАМИЧЕСКОГО КОНСЕРВАТИЗМА




  Наши партнеры:

  Брянское отделение Изборского клуба  Русский Обозреватель  Аналитический веб-журнал Глобоскоп    Изборский клуб Нижний Новгород  НОВАЯ ЗЕМЛЯ  Изборский клуб Молдова  Изборский клуб Саратов

Счетчики:

Яндекс.Метрика    
         
^ Наверх